Current Topics in Organic Chemistry

Uwe Rinner

uwe.rinner@jku.at

Lecture notes:

rinner-group.univie.ac.at

Scheduled meeting times:

Dienstag, 10.03	10:15 – 12:45
Mittwoch, 11.03	10:15 – 12:45
Dienstag, 17.03	10:15 – 12:45
Mittwoch, 18.03	10:15 – 12:45
Dienstag, 31.03	10:15 – 12:45

Mittwoch, 01.04	10:15 – 12:45
-----------------	---------------

Tyrosine is an important starting material for a variety of natural products:

Phenethylisoquinoline alkaloids:

Phenethylisoquinoline alkaloids are biosynthesized in analogy to benzyltetrahydroisoquinoline alkaloids:

Biosynthesis of colchicine:

Colchicine:

Highly toxic natural product isolated from the autumn crocus (*Colchicum autumnale*).
Traditionally used to treat gout and swellings.
Used as herbal remedies by ancient cultures (Ancient Egypt 1500 BC); first isolated in 1820 by Pelletier and Caventou

Approved to treat gout – also used in the treatment of various forms of cancer (inhibits tubulin polymerization)

Biological Activity - microtubuli:

- long, filamentous, tube-shaped protein polymers
- essentiell in development and maintenance of cell shape, transport of vesicles, in cell signaling, cell division, mitosis
- composed of $\alpha\text{-}$ and $\beta\text{-}$ tubulin heterodimers
- dynamic polymers

Nature Reviews | Cancer

Biological Activity - microtubuli:

- •importance in mitosis and cell division makes microtubules as a target for anticancer drugs
- various binding-sites for antimitotic drugs
- chemically diverse substances bind to soluble tubulin and/or directly to tubulin in the microtubules
- inhibition of cell proliferation by acting on the polymerization dynamics of spindle microtubules
- two groups of microtubule-targeted antimitotic drugs

microtubule-stabilizing agents

Nature Reviews | Cancer

Biological Activity - microtubuli:

- colchicine binds to tubulin
- inhibits tubulin poymerization
- disruption of dynamic equilibrium needed in formation of microtubules from α and β tubulin heterodimers

Formation of abnormal mitotic spindles results in cell cycle arrests in the M-phase and apoptotic cell death

Nature Reviews | Cancer

Banwell's synthesis of colchicine:

Reagents and conditions: a) NaOH, MeOH, 96%; **b)** H_2 , Pd/C, EtOAc, 15 °C, 96%; **c)** NaBH₄, THF, MeOH, 96%; **d)** Pb(OAc)₄, 3Å molecular sieves, CH₂Cl₂, 15 °C, 100%; **e)** CF₃CO₂H, 3Å molecular sieves, THF, C₆H₆, 0 °C, 42%; **f)** BnBr, MeCN, 88%; **g)** NMO, TPAP, 4Å molecular sieves, CH₂Cl₂, 15 °C, 98%; **h)** 1, BH₃, THF, 15 °C, 88%; **i)** H_2 , Pd, Pd/C, EtOAc, 15 °C, 99%; **j)** Tl(NO₃)₃, MeOH, -20 °C, 83%; **k)** Me₃S(O)I, NaH, DMSO, 54%; **l)** CF₃CO₂H, CH₂Cl₂, 15 °C, 48%; **m)** DIAD, PPh₃, Zn(N₃)₂•2py, THF, 15 °C, 30%; **n)** PPh₃, H₂O, THF, 15 °C; **o)** Ac₂O, py, 60% (over 2 steps).

<u>Alternative strategies towards colchicine – oxidative phenol couplings:</u>

Desacetmidocolchiceine; Scott, 1965:

Reagents and conditions: a) FeCl₃•6H₂O, H₂SO₄ (6 N), EtOH, CHCl₃ 4-5%.

Desacetmidocolchiceine; Kaneko, 1968:

Reagents and conditions: a) isoamylnitrite, H₂SO₄ (conc), 7 - 10 °C; then Cu, dioxane, rt, 24 h, 5%.

Alternative strategies towards colchicine – oxidative phenol couplings:

Reagents and conditions: a) anodic oxidation, HBF₄, MeCN, 0.92-1.00 V, 20 min, 80%; **b)** NaBH₄; **c)** CH₂I₂, Zn/Cu couple; **d)** Jones oxidation, 42% **e)** Ac₂O, H₂SO₄, 90%.

Alternative strategies towards :

Reagents and conditions: a) CF₃CO₂H, rt, 71%; **b)** CF₃CO₂H, rf; **c)** DDQ, C₆H₆, reflux, 54%.

Tyrosine is an important starting material for a variety of natural products:

Amaryllidaceae alkaloids:

The great variety of Amaryllidaceae alkaloids can be explained by different coupling protocols of the key intermediate.

Amaryllidaceae alkaloids:

The biosynthesis of Amaryllidaceae alkaloids starts with the formation of 4'-Omethylnorbelladine from tyrosine and phenylalanine.

Amaryllidaceae alkaloids:

Only few enzymes have been identified which are responsible for the elaboration of the characteristic carbon frameworks.

The carbon frameworks are generated by different phenolic coupling reactions of methylnorbelladine.

Amaryllidaceae alkaloids – proposed biosynthesis of narciclasine:

No enzymes have been identified. The proposed route has been developed after extenive studies with 13C and 14C labeled tyrosine.

Amaryllidaceae alkaloids – proposed biosynthesis of galantamine:

Comparison biosynthesis morphine and galantamine:

Amaryllidaceae alkaloids – biological activity:

Pancratistatin R = OH7-Deoxypancratistatin R = H

Plants of the Amaryllidaceae family have been used extensively by ancient cultures worldwide. Over 30 plants have been reported effective in the primitive treatment of cancer.

The chemical investigation of Amaryllidaceae alkaloids began with the isolation of lycorine from *Narcissus pseudonarcissus* in 1877.

Isolated in 1984 from *Pancratium littorale*, pancratistatin was identified to be highly active against several human cancer cell lines.

Derivatives of pancratistatin are currently used in clinical trials.

Hartwell, J. L. *Lloydia* **1967**, *30*, 379. Gerrard, A. W. *Pharm. J.* **1877**, *40*, 221.

Danishefsky's synthesis of pancratistatin:

Reaction conditions: (a) $HC(OEt)_3$, Amberlyst-15, C_6H_6 , 86%; (b) NaH, Et_2NCOCI , THF, 86%; (c) K_2CO_3 , CH_2Br_2 , CuO, DMF, 70%; (d) *s*-BuLi, TMEDA, THF, 58%; (e) TBSCI, imidazole, CH_2CI_2 , 86%; (f) *s*-BuLi, TMEDA, THF, 70%; (g) allylmagnesium bromide, Et_2O , 92%; (h) (i) CH_3SO_2CI , Et_3N , CH_2CI_2 ; (ii) DBU, 54%; (i) 1-(benzene-sulfonyl)-2-nitroethene, $CHCI_3$, 96%; Bu_3SnH , AIBN, PhCH₃, 72%; (j) TBAF, THF, 79%; (k) (i) (Bu_3Sn)O, $C_6H_5CH_3$, (ii) I_2 , THF, 67%; (I) BnBr, Ag_2O , DMF, 85%; (m) OsO_4 , NMO, CH_2CI_2 , THF, H_2O , 90%;

Danishefsky's synthesis of pancratistatin:

(n) DBU, C₆H₆, 88%;

(o) 2-acetoxyisobutyryl bromide, CH₃CN, 88%; (p) OsO₄, NMO, CH₂Cl₂, THF, H₂O, 88%; (q) Bu₂SnO, C₆H₅CH₃, 4-methoxybenzyl bromide, *n*-Bu₄NI, (r) BnBr, Ag₂O, DMF, 95%; (s) DDQ, CH₂Cl₂, H₂O, 75%; (t) Zn, AcOH, H₂O, CH₂Cl₂, 81%; (u) NaH, CCl₃CN, THF, 74%; (v) 100-105 °C, 0.05-0.1mm Hg, 56%; (w) OsO₄, NMO, THF, H₂O, 75%; (x) K₂CO₃, MeOH, CH₂Cl₂, DCC, 82%; (y) H₂, Pd(OH)₂, EtOAc, 90%.

Hudlicky's synthesis of pancratistatin:

Reaction conditions: (a) DMP, *p*-TsOH, acetone; (b) PhINTs, Cu(acac)₂, CH₃CN, 27% (over 2 steps), (c) Bu₃SnH, AIBN, THF, reflux, 78%; (d) (i) **31**, *s*-BuLi, TMEDA, THF, (ii) CuCN, (iii) **27**, BF₃.Et₂O, 49%; (e) *s*-BuLi, (BOC)₂O, THF, 68%; (f) Na / anthracene, DME, 62%; (g) morpholine-SMEAH, THF, 72%; (h) BnBr, K₂CO₃, DMF, 83%; (i) NaClO₂, KH₂PO₄, 2-methyl-2-butene, *t*-BuOH, H₂O, CH₂N₂, 98%; (j) HOAc, THF, H₂O, 73%; (k) *t*-BuOOH, VO(acac)₂, C₆H₆, 53%; (l) C₆H₅COONa, H₂O, 100 °C, 51%.

Hudlicky's synthesis of narciclasine:

Reagents and conditions: a) DMP, acetone, *p*-TsOH (cat.); **b)** NaIO₄, methyl carbamate, MeOH, 0 °C to rt, 60% (2 steps); **c)** *t*-BuLi, B(OEt)₃, THF, -78 °C, 97%; **d)** Pd(PPh₃)₄ (0.03%), Na₂CO₃, C₆H₆, EtOH, H₂O, reflux; Mo(CO)₆, reflux, 45%; **e)** CeCl₃, NaBH₄, MeOH, 0 °C, 80%; **f)** DEAD, Bu₃P, BzOH, THF, 75%; **g)** Dowex 50X8-100, MeOH; Ac₂O, py, DMAP, 70% **h)** Tf₂O, DMAP, CH₂Cl₂, 0 °C 41%; **i)** Amberlyst A21, MeOH, 80%; **j)** LiCl, DMF, 120 °C, 20%.

Keck's synthesis of 7-deoxypancratistatin:

Reagents and conditions: a) 2,2-dimethoxypropane, acetone, *p*-TSOH, 79%; **b)** HOAc, H₂O, 79%; **c)** TBSCl, imidazole, DMF, -40 °C, 71%; **d)** 6-iodopiperonol, NaH, CCl₃CCN, 0 °C; **e)** TfOH, THF, 0 °C, 75% (over 2 steps); **f)** L-selectride, CH₂Cl₂, -78 °C; **g)** HCl•H₂NOBn, py, 96% (over 2 steps); **h)** TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; **i)** HF•py, THF, 84% (over 2 steps); **j)** TPAP, NMO, 4 Å molecular sieves; **k)** 1-amino-2-phenylhydrazine, EtOH, 0 °C, 83% (over 2 steps).

Keck's synthesis of 7-deoxypancratistatin:

7-deoxypancratistatin

Reagents and conditions: a) Ph₃SnH, AIBN, C₆H₆, reflux, 78%; **b)** SmI₂; TFAA, THF, 60 °C, 88%; **c)** PCC, CH₂Cl₂, 83%; **d)** BF₃•Et₂O; **e)** K₂CO₃, MeOH, 88% (2 steps).

Hudlicky/Rinner's synthesis of 7-deoxypancratistatin:

Barton and Kirby's synthesis of galantamine:

Reagents and conditions: a) MeNH₂, MeOH; KBH₄, 67%; **b)** KOH, BnCl, EtOH, reflux, 67%; **c)** (COCl)₂, C₆H₆, quant.; **d)** C₆H₆, 85%; **e)** LAH, Et₂O, reflux, 88%; **f)** H₂, Pd/C, MeOH, H₂O, HCl; NaHCO₃, 76%; **g)** K₃Fe(CN)₆, H₂O, NaHCO₃, 1.4%; **h)** LAH, Et₂O quant.

Galantamine served as model substrate for the development of oxidative coupling protocols:

Galantamine; Kametani, 1969; Vlahov, 1989:

Reagents and conditions: a) K₃Fe(CN)₆, H₂O, NaHCO₃, 60 °C, 1.5 h; 40%; **b)** same as a), 15%.

Galantamine; Kametani, 1971:

Reagents and conditions: a) K₃Fe(CN)₆, H₂O, CHCl₃, NaHCO₃, 60 °C, 1.5 h; 5%;

Galantamine served as model substrate for the development of oxidative coupling protocols:

Galantamine; Kita,1998:

Reagents and conditions: a) PIFA, CF₃CH₂OH, -40 °C, 40%

Galantamine; Koga,1977:

Reagents and conditions: a) Mn(acac)₃, 49%.

Galantamine; Vlahov, 1984:

Reagents and conditions: a) anodic oxidation 1.15V, Pt-electrode, MeOH, CH₃CN, AgNO₃, 80%.

Thank you for your interest